facebook-alt

Which Shoulder Reduction Techniques Work Best, And Which Should You Avoid?

Marsena Collins NP-C

Shoulder dislocations are very common. In fact, they account for over 50 percent of all major joint dislocations. Further, the shoulder can dislocated in three difference ways:

  • Anterior (~95%)
  • Posterior (~4%)
  • Inferior (less than 1%)

Reducing a dislocated shoulder requires an understanding of how the shoulder is dislocated. A successful reduction relies on choosing the correct technique. Fortunately, there are many successful reduction techniques reductions and methods that will work. This article will help you choose the simplest and quickest technique for your patient. These are all also aimed at avoiding further injury to their shoulder.

Shoulder Reduction

What is a Reduction?

Reduction maneuvers work by using abduction and also external rotation to disengage the humeral head from the glenoid. They also rely on axial traction to reduce the joint. “Axial traction” refers to a force directed along the length of the bone. For example, a force pushing the humerus towards the humeral head and glenoid.

The provider should feel a distinct clunk as the shoulder reduces regardless of technique used.

Reduction Techniques That Work Best for Anterior Dislocation

There is no clear evidence to support the superiority of one reduction technique over the other. I suggest starting with scapular manipulation, which is the least painful for the patient. If this approach is unsuccessful, next attempt the external rotation technique (with or without the Milch technique). Traction-countertraction techniques can be attempted If reduction is still unsuccessful after these attempts.

Scapular manipulation (Good First Maneuver !!)

  • Quick, easy, and well tolerated by the patient 
  • Employs rotation of the scapula to disengage the humeral head from the glenoid and also allow it to reduce into the glenoid. 
  • Success rates range from 80 to 100%
  • Takes one to five minutes
  • It is easiest to perform with the patient upright or in a prone position (see next)

Upright Scapular technique 

  • Place the head of the bed at 90 degrees. Have the patient also dangle their legs over the side of the gurney and rest their unaffected shoulder against the upright portion of the bed. Encourage the patient to relax their shoulder muscles. 
  • Stand behind the patient and locate the scapula. Next, simultaneously push the tip medially and the acromion inferiorly using your thumbs, thereby rotating the scapula.
  • While you are doing this, an assistant provides gentle forward or downward traction on the arm to exert downward traction, the assistant grabs the patient’s wrist with one hand and the already flexed elbow with the other hand and pushes down on the elbow while holding the wrist in place. Downward traction helps to prevent movement of the patient’s arm and may increase success rates.

Prone Scapular technique 

  • Have the patient lie prone on a stretcher.
  • Hang the arm off the side of the stretcher and allow it to drop towards the ground.
  • Add About 10 to 15 pounds of weight to the distal wrist by pulling down on the forearm.
    • This can also be done by hanging a weight from the patient’s wrist.
  • Manipulate the scapula in similar fashion to the upright approach.
  • If scapular technique is unsuccessful, then proceed with external rotation

External rotation technique 

This technique reduces anterior glenohumeral dislocation by overcoming spasm of the internal rotators of the humerus, unwinding the joint capsule, and also enabling the external rotators of the rotator cuff to pull the humerus posteriorly. This method is also safe, easy to understand and teach, has no reported complications, and requires only one clinician. It is successful in 80 to 90 percent of patients with a simple anterior shoulder dislocation.

  • Have the patient lie supine with their elbow flexed to 90 degrees (this relaxes the long head of the biceps and allows movement of the humeral head.
  • Grasp the flexed elbow with one hand to maintain the adducted position of the arm and hold the wrist of the patient’s arm with your other hand.
  • Ask the patient to let their arm fall to the side (ie, externally rotate) slowly (over 5 to 10 minutes) while you gently guide the hand. Whenever the patient feels pain or muscle spasm, stop and allow the muscles to relax.
  • Reduction generally occurs with the arm externally rotated between 70 to 110 degrees Reduction is often subtle and the “clunk” of the humerus rearticulating with the glenoid.

Milch technique

Add the Milch technique if reduction is unsuccessful with the external rotation approach. This can be done even after the arm is fully externally rotated. To perform this technique, abduct the fully externally rotated arm into an overhead position, maintaining external rotation throughout the abduction. Apply gentle traction in line with the humerus and also direct pressure over the humeral head with the operator’s thumb in the axilla. The Milch technique aims to align the shoulder muscles in an overhead position that allows for simple reduction of the humeral head without other muscular interference.  The success rates of this technique range from 86 to 100 percent.

OTHER COMMONLY Used Anterior Reduction Techniques 

Traction countertraction

Traction-countertraction uses a sheet wrapped under the axilla. While the operator provides gentle continuous traction at the wrist or elbow, the assistant provides countertraction with the sheet from the opposite side of the patient. This multiplies the necessary force to move the humeral head into a position for reduction.

Stimson technique

If the above techniques are unsuccessful, one alternative method is Stimson’s technique, which involves placing the patient prone and hanging the affected extremity off the edge of the bed with 10 to 15 pounds of weight. This is similar to the prone scapular technique without manual rotation of the scapula. This usually spontaneously reduces the shoulder within 30 minutes.

Spaso technique

The Spaso technique employs gentle vertical traction and external rotation in the supine patient to reduce the dislocation, usually within one to two minutes.

FARES (Fast, Reliable, and Safe) technique

In this technique, the patient lies supine on a stretcher with the affected upper extremity at their side. The clinician also grasps the patient’s wrist and gently pulls the arm to provide traction. Counter-traction is not necessary. Gradually abduct the arm while the clinician continuously moves the arm up and down in an arc of approximately 10 cm. The up and down motion helps relax the shoulder musculature. External rotation should be added if the shoulder has not reduced by 90 degrees of abduction.

Cunningham technique

To perform this technique, the clinician sits in front of the patient, who assumes a comfortable sitting position. The patient places the hand on the affected side atop the clinician’s shoulder. The clinician rests one arm gently in the patient’s elbow crease while the other hand gently massages the patient’s biceps, deltoid, and trapezius muscles to help them relax. While encouraging the patient to relax, the clinician instructs the patient to pull their shoulder blades together and straighten their back. This maneuver moves the scapula medially and removes the major obstacle preventing reduction of the humeral head. 

Posterior shoulder dislocation reduction 

Posterior shoulder reductions rely on moving the humeral head anteriorly from a posteriorly dislocated position. This reduction maneuver involves axial traction on the adducted arm with the elbow flexed. Interally rotate and adduct the arm while applying traction. Sheets may also be used similar to the traction-countertraction method above. Direct pressure on the posterior aspect of the dislocated humeral head, directing it anteriorly, or gentle lateral traction using a sheet looped under the axilla to unlock the glenoid rim may also assist reduction.  Immobilize the arm in a neutral position when completed.

Inferior shoulder dislocation reduction 

Inferior dislocations result from a significant axial loading force that impacts the humerus underneath the glenoid and/or clavicle. These dislocations require a tremendous amount of force. Often times these patients are unable to rotate their shoulder, and also present with an outstretched arm that appears to be waving. This position is known as luxatio erecta. Reduction is achieved by traction-countertraction in line with the abducted humerus. Gentle, gradual adduction of the arm reduces the dislocation.  Closed reduction attempts work in most cases, unless a “buttonhole” deformity exists. This deformity is caused by the humeral head being trapped in a tear of the inferior capsule. These cases require open surgical reduction.

Techniques to Avoid

Avoid the wrestling technique, chair technique, Eskimo technique, Hippocratic technique, and Kocher’s method, these techniques are more complex and also associated with undesirable complications!!

The Hippocratic Technique

The Hippocratic technique involves traction-countertraction with the clinician’s foot placed in the patient’s axilla. This movement can cause undue stress to the patient’s shoulder joint and cause more damage.

Kocher’s Method

This technique required abducting the arm 45 degrees while applying in-line traction of the patient’s arm. Then, the following steps are taken:

  • Externally rotate the arm
  • Bring the elbow across the chest to the midline
  • Internally rotate the arm until the patient’s hand touches their shoulder

Both the Hippocratic and Kocher techniques have a high rate of fractures, brachial plexus injury, and vascular injury. For these reasons, these techniques should be avoided.

Post Reduction

  • Immobilize the arm and place in a sling. The patient should wear this for approximately 3 weeks.
  • Confirm reduction with AP and lateral (y-view) radiographs. These images also ensure that no iatrogenic fractures have occurred during reduction maneuvers.
  • Direct patient to Follow-up outpatient Orthopedics

References 

Sherman, S. Shoulder dislocation and reduction: (Sept 2020). UpToDate (Retrieved December 2021) from https://www.uptodate.com/contents/shoulder-dislocation-and-reduction#h28

Learn more about this and other important topics. Check out our Advanced Practice Provider Clinical Skills and Procedure Workshop!

Leave a Comment

Are you enjoying this article?

If so, you should check out our

Conferences and Workshops

We make hands-on training fun and engaging!

* Highly rated * Add more confidence * See better outcomes *

Live programs are available in:

The Advanced and Difficult Airway Course

[tribe_events_list view="photo" category="ADAC"]

The Ultrasound Course

[tribe_events_list view="photo" category="POCUS"]

The Clinical Skills & Procedure Workshop

[tribe_events_list view="photo" category="2DAYEVENT" cost="no" limit="10"]

The Clinical Skills & Procedure Workshop + The Airway Course

[tribe_events_list view="photo" category="ADAC3"]

The Clinical Skills & Procedure Workshop + The Ultrasound Course

[tribe_events_list view="photo" category="POCUS3"]

Dermatology Overview

Dermatology Essentials

Definition

Cellulitis: infection of dermis and subcutaneous fat

Impetigo: superficial purulent lesions, esp. on face and extremities. Commonly with bullae and/or golden crust

Erysipelas: raised erythematous lesion with clear borders

Folliculitis: hair follicle inflammation. Superficial and limited to the epidermis.

Furunculosis: hair follicle infection that extend to dermis. Multiple = carbuncle

Necrotizing Infection: Deeper SSTI that involve fascial and/or muscle compartments

Etiology

Microbiology

  • Cellulitis: primarily Staph and Strep, incl. MRSA. In immunocomp./diabetics, GNRs also
    • Other etiologies: cat/dog bite P. moltocida; gardening Sporothrix; salt water Vibrio vulnificus; puncture wound → Pseudomonas
  • Impetigo: Strep or Staph
  • Erysipelas: group A Strep usu.
  • Folliculitis/furunculosis: S. aureus, Pseudomonas
  • Necrotizing Infections: Polymicrobial (eg strep and GNRs in Type I, Fournier’s), Group A Strep, S. aureus, Aeromonas hydrophila, Vibrio vulnificus

At risk: athletic teams, military, prison, MSM, communities with MRSA infxn, Diabetic

High risk for more aggressive infection: splenectomy, immunocompromised

Differential Diagnosis

  • Cellulitis
  • Impetigo
  • Erysipelas
  • Folliculitis
  • Furunculosis
  • Necrotizing fasciitis
  • Myonecrosis
  • Calciphylaxis
  • Cutaneous metastasis from neoplasms (especially adenocarcinoma)
  • Graft-versus-host disease (in appropriate population)
  • Sweet syndrome

Patient History

  • Recent trauma to the affected area?
  • Any recent surgeries (hip replacement is risk factor)?
  • Ask about the presence of HIV, diabetes, liver disease, or kidney disease.
  • History of IV drug abuse or subcutaneous injection.
  • Recurrent Cellulitis: Assess for predisposing conditions such as edema, obesity, eczema, venous stasis, and toe web abnormalities.
  • Recurrent Abscesses: Search for local causes such as pilonidal cyst, HS, or foreign body. Consider 5-day decolonization (intranasal mupirosin, daily chlorhexidine). Consider neutrophil disorder if abscesses began in childhood.

Physical Exam

  • Evaluate affected area for erythema, edema, warmth, and pain on palpation.
  • Look for lymphangiitis (erythematous tracks under the skin marking an inflamed lymphatic system), palpate for lymphadenopathy.
  • Assess for evidence of necrotizing infection: systemic toxicity with high temperature, hypotension, disorientation, lethargy, skin discoloration or bullous lesions, anesthesia, firm skin with wooden-hard induration, pain extending beyond cutaneous erythema, pain out of proportion to exam

Work Up

Note: Diagnosis is largely clinical

Laboratory:

  • CBC with diff, ESR/CRP if concern for osteo, CK if concern for necrotizing infection or pyomyositis.
  • Furuncle/pustule can be aspirated for gram stain and culture.
  • For cellulitis, blood cultures are generally low yield, but should be obtained in patients undergoing chemo, neutropenic patients, and those who suffered animal bites.

Imaging:

  • If concern for osteo, xray; consider MRI
  • If concern for necrotizing infection can look for gas in fascial planes on x-ray or CT, but this is highly insensitive

Triage

More serious presentations of skin and soft tissue infections:

  • Toxic shock syndrome: fever, HA, vomiting, myalgias, pharyngitis, diarrhea, diffuse rash with desquamation. Hypotension and shock.
  • Osteomyelitis: infection of bone due to hematogenous seeding or direct spread from overlying focus.
  • Necrotizing fasciitis: infection and necrosis of superficial fascia, subq fat, and deep fascia. Clues: rapidly spreading cellulitis, systemic toxicity (inc TSS), pain out of proportion to exam, bullae formation, gangrene, crepitus. Surgical and medical emergency.
  • Gas gangrene: Clostridial myonecrosis, a fulminant skeletal muscle infection. C. perfringins usually in the setting of trauma; C. septicum in setting of cancer. Surgical and medical emergency.

Treatment

Purulent (furuncle/carbuncle/abscess):

  • Mild: I & D
  • Moderate: I & D, send for culture and sensitives
    • Empiric treatment: Bactrim 1-2 DS tab BID or Doxycycline 100mg BID
    • Defined treatment: MRSA: Bactrim 1-2 DS tab BID, MSSA: Dicloxacillin 250 Q6H or Cephalexin 500 Q6H or Cefadroxil 500mg po q12.
  • Severe: I & D, send for culture and sensitiivies
    • Empiric treatment: Vancomycin or Daptomycin or Linezolid or Ceftaroline
    • Defined treatment: MRSA: similar to empiric, MSSA: Nafcillin or Cefazolin or Clindamycin (if Susceptible)

Nonpurulent (necrotizing infection/cellulitis/erysipelas):

  • Mild: impetigo: topical mupirocin; oral treatment: Penicillin VK or Cephalosporin (eg Cephalexin 500mg PO Q6H) or Dicloxacillin 500mg PO Q6H or Clindamycin 300mg PO Q8H
  • Moderate: IV therapy: penicillin or Cefriaxone or Cefazolin or Clindamycin 300mg PO Q8H or 600mg IV Q8H
  • Severe: emergency surgical evaluation/debridement to rule out necrotizing process
    • Empiric treatment: Vancomycin PLUS Piperacillin/Tazobactam
    • Defined treatment for necrotizing infections:
      • Strep. pyogenes:Penicillin PLUS Clindamycin
      • Vibrio vulnificus:Doxycycline PLUS Ceftazidime
      • Aeromonas hydrophila:Doxycycline PLUS Ciprofloxacin
      • Polymicrobial: Vancomycin PLUS Piperacillin/Tazobactam

Duration of Therapy: 5-7 Days

Treatment Notes:

Erythema may initially worsen with antibiotics 2/2 local bacterial killing.

– For cellulitis, elevation of the affected extremity is essential to treatment.

– For Staph aureus infections (eg suppurative cellulitis) in 2014 at Hopkins susceptibilities were: TMP-SMX 87-88%, Tetracycline 89-91%, and Clindamycin 46-60%.

– For Beta-hemolytic Strep infections (eg non-suppurative cellulitis) all strains are susceptible to penicillin. At Hopkins there are high rates of resistance to TMP-SMX and tetracyclines and variable rates of resistance to Clindamycin.

– If you are concerned for a necrotizing infection, CONSULT SURGERY. Empiric antibiotic treatment with vancomycin (or linezolid) PLUS zosyn (or carbapenem) should be initiated. Clindamycin can be added to inhibit toxin production.

References

  1. Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59(2):e10-52. [PMID:24973422]
  2. Swartz MN. Clinical practice. Cellulitis. N Engl J Med. 2004;350(9):904-12. [PMID:14985488]

Resources

Heart Failure

Cardiology Essentials

Definition

Syndrome characterized by impaired myocardial performance and progressive maladaptive neurohormonal activation of the cardiovascular system leading to circulatory insufficiency to meet the body’s demands.

Systolic heart failure or heart failure with reduced ejection fraction (HFrEF): Clinical diagnosis of heart failure and an EF of less than 50%.

Diastolic heart failure or heart failure with preserved ejection fraction (HFpEF): Clinical signs and symptoms of heart failure with evidence of normal or preserved EF and evidence of abnormal LV diastolic function by Doppler echocardiography or cardiac catheterization

Right heart failure: Majority of cases are a result of left heart failure, although isolated pulmonary diseases can also cause this syndrome.

Etiology

  • Non-ischemic dilated cardiomyopathy (familial or idiopathic)
  • Hypertrophic cardiomyopathy
  • Restrictive cardiomyopathy
  • Cardiomyopathy as a result of fibroelastosis
  • Mitochondrial disease
  • Left ventricular non-compaction
  • Ischemic cardiomyopathy
  • Stress induced cardiomyopathy
  • Valvular obstruction or insufficiency
  • Hypertensive cardiomyopathy
  • Inflammatory (lymphocytic, eosinophilic, giant cell myocarditis)
  • Infectious (Chagas, Lyme disease, HIV, viral, bacterial, or fungal infections)
  • Endocrine disorders (thyroid disease, adrenal insufficiency, pheochromocytoma, acromegaly)
  • Familial storage disease (hemochromatosis, glycogen storage disease, Hurler syndrome, Anderson-Fabry disease)
  • Amyloidosis
  • Connective tissue disease (SLE, polyarteritis nodosa, scleroderma, myositis, sarcoidosis)
  • Muscular dystrophies
  • Neuromuscular disease (Friedreich ataxia, Noonan disease)
  • Toxins (alcohol, anthracyclines, radiation)
  • Tachyarrhythmia

Pathophysiology

Progressive disorder initiated by a form of myocardial injury either sudden (MI or myocarditis) or chronic insults (familial, metabolic, HTN, valve disease, shunting) that result in maladaptive compensatory mechanisms.

These mechanisms include activation of the sympathetic nervous system and activation of the RAS system which overtime lead to pump dysfunction and circulatory collapse.

Differential Diagnosis

Other entities that may look like acute decompensated heart failure:

  • Acute coronary syndrome
  • Interstitial lung disease
  • Pneumonia
  • ARDS
  • Other sources of volume overload such as CKD/ESRD vs cirrhosis, pulmonary hypertension, PE, cardiac tamponade, constrictive or restrictive pericarditis

Patient History

Ask about the signs and symptoms:

  • Worsening dyspnea at rest or exertion?
  • Fatigue?
  • Orthopnea?
  • PND?
  • Weight gain?
  • Increased edema?
  • Lightheadedness?
  • indigestion?
  • Chest heaviness?
  • Fever?
  • Chest pain?
  • Timing of symptom onset?

Ask about triggers of acute decompensation:

  • dietary indiscretion? foods high in Na like lunch meats, chips, canned foods, fast foods?
  • missed medication doses (diuretic)?
  • are they weighing themself daily? adjusting diuretics?
  • any signs or symptoms that an ischemic event has occurred?
  • do they consume alcohol excessively?

Physical Exam

  • Weight gain (if possible look at previous discharge weights)
  • Elevated jugular venous pulsations (Key!), hepatojugular reflux
  • Orthopnea
  • Pulmonary rales
  • Third and/or fourth heart sound
  • Pedal edema
  • Sacral edema in patients who are mostly in bed

Work Up

Laboratory

  • Renal function panel, liver function panel (CMP): Patients who are volume overloaded due to acute decompensated heart failure often have an acute kidney injury and hepatic congestion.
  • Potassium, calcium (CMP), magnesium. May need to check more frequently (e.g. bid) especially if pt will be diuresed.
  • CBC: Anemia is present in up to 40% of patient with heart failure.
  • Consider pro-BNP if volume exam not helpful; compare to prior.
  • If patient is presenting newly with HF and/or etiology is unclear:
    • troponin and lipid profile, especially if HFrEF the pt may need further work up for ischemic disease
    • TSH
    • in the right patient, consider iron studies (hemochromatosis), serum ceruloplasmin (Wilson’s), trypanosoma cruzi IgG (chagas), blood alcohol level or CDT etc.

Imaging

  • ECG, chest x-ray, echocardiography

Other imaging and diagnostic modalities that can be considered based on the patient’s history:

  • Cardiac MR
  • Nuclear imaging
  • Right heart catheterization
  • Left heart catheterization
  • CT angiogram.
  • Endomyocardial biopsy

 

Triage

Strongly consider step-down or ICU if evidence of decompensation with hypoperfusion (cold and wet):

Altered mental status, Cold extremities, evidence of organ hypoperfusion: increasing lactate or rising creatine, narrow pulse pressures

Risk Stratification

The American College of Cardiology/American Heart Association (ACC/AHA) Heart Failure Classification is a system used to classify heart failure into four stages based on the severity of symptoms and degree of functional impairment.

The four stages of heart failure in the ACC/AHA classification are:

  1. Stage A: At high risk of developing heart failure due to underlying conditions or risk factors such as hypertension, diabetes, or coronary artery disease.

  2. Stage B: Structural heart disease is present, but there are no symptoms of heart failure. This stage includes patients with a history of myocardial infarction (heart attack) or left ventricular remodeling after a cardiac injury.

  3. Stage C: Structural heart disease is present, and there are symptoms of heart failure such as fatigue, shortness of breath, and decreased exercise tolerance. This stage includes patients with past or current symptoms of heart failure who are responding to treatment.

  4. Stage D: Advanced heart failure that is refractory to standard treatments. This stage includes patients with severe symptoms of heart failure at rest, despite maximal medical therapy. Patients in this stage may require advanced interventions such as heart transplant or mechanical circulatory support.

The ACC/AHA Heart Failure Classification is based on a combination of factors, including clinical symptoms, physical examination findings, imaging studies, and laboratory tests. This classification system is useful for guiding treatment decisions and predicting outcomes in patients with heart failure. It can also help clinicians identify patients at high risk for developing heart failure and initiate preventive interventions to improve outcomes.

The New York Heart Association (NYHA) Functional Classification is a system used to classify heart failure into four stages based on the severity of symptoms and degree of functional impairment. The classification system was developed in 1928 and is still widely used today.

New York Heart Association functional classification

The NYHA Functional Classification is based on the patient’s subjective symptoms and limitations related to physical activity. It is often used in clinical practice to assess the severity of heart failure, guide treatment decisions, and predict outcomes. Patients with more severe symptoms are more likely to have poorer outcomes, and may require more aggressive treatment or consideration of advanced interventions, such as heart transplantation or mechanical circulatory support.

It’s important to note that the NYHA Functional Classification is just one aspect of the overall assessment of heart failure and should be used in conjunction with other clinical and diagnostic findings.

The Seattle Heart Failure Model (SHFM) is a clinical prediction model that provides an estimate of the probability of death and other adverse outcomes in patients with heart failure. It was developed to help clinicians make more informed decisions about treatment and to assist in risk stratification of patients with heart failure. The SHFM incorporates a wide range of patient characteristics, including demographics, clinical symptoms, laboratory values, and medication use, to predict the likelihood of various outcomes, such as mortality, hospitalization, and quality of life. The model is based on data from over 11,000 patients with heart failure and has been validated in several independent cohorts. To use the SHFM, a clinician inputs data on the patient’s age, sex, symptoms, medical history, laboratory values, and medication use into a web-based calculator. The model then generates a personalized estimate of the patient’s probability of death and other outcomes at 1 year and 5 years. The SHFM also provides a range of other information, such as the estimated survival time, probability of hospitalization, and predicted quality of life. The SHFM has been shown to have good accuracy in predicting outcomes in patients with heart failure, and it can be useful in guiding treatment decisions and in risk stratification of patients. However, it is important to note that the SHFM is just one tool among many that can be used in the management of heart failure, and it should be used in conjunction with clinical judgment and other diagnostic and prognostic tools.  

The MAGGIC (Meta-Analysis Global Group in Chronic Heart Failure) risk score is a prognostic model that is used to predict mortality in patients with chronic heart failure. It was developed using a large international database of over 39,000 patients with heart failure from 30 different studies.

The MAGGIC risk score takes into account a range of patient characteristics and clinical features that have been shown to be predictive of mortality in heart failure, including age, sex, systolic blood pressure, NYHA functional class, heart rate, serum sodium, serum creatinine, ejection fraction, etiology of heart failure, and use of certain medications such as ACE inhibitors, beta blockers, and diuretics.

The MAGGIC risk score assigns points to each of these variables based on their estimated contribution to mortality risk. The total number of points is then used to estimate the patient’s probability of mortality at 1 year and up to 5 years. The MAGGIC risk score has been shown to have good discrimination and calibration in predicting mortality in patients with heart failure.

The MAGGIC risk score is useful for identifying high-risk patients who may benefit from closer monitoring and more aggressive treatment, as well as for guiding clinical decision-making and communication with patients and families about prognosis. However, it is important to note that the MAGGIC risk score is just one tool among many that can be used in the management of heart failure, and it should be used in conjunction with clinical judgment and other diagnostic and prognostic tools.

CHA2DS2-VASc score: The CHA2DS2-VASc score is a tool used to estimate the risk of stroke in patients with atrial fibrillation. Since atrial fibrillation is a common comorbidity in heart failure, this score can be useful in managing heart failure patients with concurrent atrial fibrillation.

The CHA2DS2-VASc score is a clinical prediction rule that is primarily used to estimate the risk of stroke in patients with non-valvular atrial fibrillation. It is not specifically used in the management of heart failure, but rather in the management of comorbidities that may be present in patients with heart failure.

Patients with heart failure are at an increased risk of developing atrial fibrillation and other cardiovascular diseases, such as stroke, myocardial infarction, and peripheral vascular disease. As such, the CHA2DS2-VASc score can be used in the management of heart failure as a tool to identify patients who are at an increased risk of developing these conditions, and to guide clinical decision-making regarding the use of prophylactic therapies such as anticoagulation.

The CHA2DS2-VASc score takes into account a range of patient characteristics and clinical features that have been shown to be predictive of stroke and other cardiovascular events, including age, sex, history of stroke or transient ischemic attack, hypertension, diabetes, heart failure, and vascular disease. The score assigns points to each variable based on its estimated contribution to the risk of stroke or other cardiovascular events.

While the CHA2DS2-VASc score is not specifically designed for use in heart failure, it is an important tool that can be used to guide clinical decision-making in the management of patients with heart failure and comorbidities. It can help identify patients who may benefit from prophylactic therapies and other interventions aimed at reducing the risk of stroke and other cardiovascular events.

 

Heart failure with reduced ejection fraction (HFrEF) is a condition where the heart muscle weakens and can’t pump blood effectively. Treatment for HFrEF usually involves a combination of lifestyle changes, medication, and other interventions.

The HFrEF therapy calculator is a tool that can help healthcare professionals determine the most appropriate treatment plan for patients with HFrEF. The calculator takes into account the patient’s age, sex, blood pressure, kidney function, and other factors, and recommends medications and doses that have been shown to be effective in treating HFrEF.

The calculator is based on guidelines developed by the American College of Cardiology, American Heart Association, and Heart Failure Society of America. These guidelines recommend a combination of medications that target different aspects of heart failure, including angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), beta blockers, and aldosterone antagonists.

The HFrEF therapy calculator takes into account the patient’s current medications and adjusts the recommendations accordingly. It also provides guidance on when to start or stop certain medications, and how to titrate the doses to achieve the maximum benefit while minimizing side effects.

The Renal Risk Score is a tool that helps predict the risk of developing acute kidney injury in patients with heart failure who are undergoing intravenous diuretic therapy.

The renal risk score is a tool that is primarily used to estimate a patient’s risk of developing acute kidney injury (AKI) after undergoing cardiac surgery. However, the risk of AKI is also a concern in patients with heart failure, particularly those who are hospitalized or receiving treatment with certain medications.

In patients with heart failure, the risk of AKI is often related to factors such as low cardiac output, fluid overload, and the use of medications that can affect kidney function. Some of these medications include diuretics, angiotensin-converting enzyme inhibitors (ACE inhibitors), angiotensin receptor blockers (ARBs), and nonsteroidal anti-inflammatory drugs (NSAIDs).

Several studies have looked at the use of the renal risk score in patients with heart failure. One study, published in the journal Circulation Heart Failure in 2014, found that the renal risk score was able to predict the risk of AKI in patients hospitalized with heart failure. The study also found that patients with higher renal risk scores were more likely to require dialysis or have a longer hospital stay.

Another study, published in the Journal of Cardiac Failure in 2018, evaluated the use of the renal risk score in patients with heart failure who were receiving treatment with sacubitril/valsartan, a medication used to treat heart failure with reduced ejection fraction. The study found that the renal risk score was able to predict the risk of AKI in these patients and could be used to guide dosing of the medication to minimize the risk of kidney injury.

Overall, while the renal risk score was developed for use in patients undergoing cardiac surgery, it may also be a useful tool for predicting the risk of AKI in patients with heart failure. By identifying patients at higher risk of AKI, healthcare providers can take steps to minimize the risk of kidney injury and improve outcomes for these patients.

Treatment

Acute Decompensated Heart Failure

IV diuresis:

Determine home regimen and try to give an increased dose. Patients with anasarca DO NOT ABSORB ORAL MEDS. Remember patients who are naïve to diuretics may not require high doses for good urine output. As a rule of thumb, the furosemide dose can be initially calculated at 40 (mg) X serum creatinine. Titration will be performed according to initial response. Common diuretics include furosemide, torsemide, metolazone, and Chlorothiazide. For ESRD patients who no longer make urine, volume removal will be via ultrafiltration and may need to be done more aggressively as tolerated by BP. Be sure to check electrolytes twice a day and aggressively supplement (keep K around 4 and magnesium around 2.4. Check daily weights (standing if possible) and monitor Ins and Outs.

Afterload reduction in systolic heart failure:

If no kidney injury is detected you can consider an ACE-Inhibitor, otherwise hydralazine with/or without nitrates. In more severe cases, one may consider sodium nitroprusside

Inotropy: Usually in severe cases or if effective diuresis is not achieved despite other efforts.

Dobutamine or milrinone

Remember to hold beta blockers in acute decompensated heart failure

Chronic Heart Failure Therapies

Mortality reducing agents:

  • ACE inhibitors/ARBs
    • start in all pt’s with current or prior sx’s of HFrEF unless contraindicated; try ACEi first and then try ARB if not tolerated
    • caution in pts with ↓SBP, renal insufficiency, or ↑serum potassium (>5.0 mEq/L). Angioedema occurs in < 1% of pts with ACE inhibitors.
  • ANRIs (angiotensin receptor–neprilysin inhibitor: valsartan/sacubitril)
    • start in pt’s with NYHA class II-III HFrEF who tolerate an ACE inhibitor or ARB, replacement by an ARNI is recommended to further reduce morbidity and mortality. Harmful if started concomitantly with ACEi/ARB – wait 36 hrs after stopping ACEi/ARB to inititate
  • Beta blockers (metoprolol succinate, bisoprolol, and carvedilol)
    • start in all pt’s with current or prior sx’s of HFrEF unless contraindicated
  • ISDN + Hydralazine
    • clear benifit in African American pt’s with NYHA class III-IV HFrEF
    • likely beneficial for all pt’s with HFrEF, though utility somewhat limited by TID dosing
  • Aldosterone receptor blockers (eplerenone, spironolactone)
    • recommended in patients with NYHA class II–IV HF and who have LVEF of 35% or less

HF Hospitalization Reducing Agents

  • Digoxin
  • Ivabradine (inhibits the If current in the SA node, ↓HR)
    • can use in NYHA class II-III stable chronic HFrEF (LVEF ≤35%) who tolerate maximum BB in NSR with HR of 70 bpm or more at rest[2]

Advanced Therapies

  • Left ventricular assist device (right heart must be able to tolerate this)
  • Heart transplantation

References

  1. Khot UN, Jia G, Moliterno DJ, et al. Prognostic importance of physical examination for heart failure in non-ST-elevation acute coronary syndromes: the enduring value of Killip classification. JAMA. 2003;290(16):2174-81. [PMID:14570953]
  2. Yancy CW, et al: 2016 ACC/AHA/HFSA Focused Update on NewPharmacological Therapy for Heart Failure: An Update of the 2013 ACCF/AHA Guideline for theManagement of Heart Failure, Journal of the American College of Cardiology (2016), doi: 10.1016/j.jacc.2016.05.011.
  3. Griffin BP, Callahan TD, Menon V, et al. Manual of Cardiovascular Medicine. Lippincott Williams & Wilkins. 2013 4th edition; Heart Failure and Transplant 125-159
  4. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147-239. [PMID:23747642]

Resources

Course Content

Airway Anatomy and Assessment

  • Overview of airway anatomy
  • Indications of normal airway
  • Identification of difficult airway characteristics
  • Application of assessment for anticipation

Indications for Airway Management

  • Predictors of airway failure
  • Identification of clinical risk factors
  • When to intervene

Non-Invasive Airway Interventions

  • Progressive Oxygenation
  • Pulmonary Mechanics
  • Measured oxygenation techniques
  • CPAP and BIPAP

Invasive Airway Management

  • Rescue airway interventions
  • Laryngeal mask airway
  • Posterior pharyngeal airway adjuncts
  • Endotracheal intubation

Airway Options

  • Identification and selection of the correct airway device
  • Discussion of equipment options and their uses
  • Preparation for induction and intubation

Intubation Drugs

  • A pharmacology review of induction agents
  • Selection of the best drug combinations for induction
  • Safe decision-making

Induction and Intubation

  • Application of each prior learning topic to provide safe intubation
  • Stepwise, thorough discussion about safe airway induction and intubation
  • Correct techniques for endotracheal tube insertion

Confirming Tube Placement

  • Processes to ensure an endotracheal tube is correctly placed
  • Discussion about reintubation and confirmation
  • Application to difficult airway management

Difficult Airway Equipment

  • Intubating LMA, Lighted Stylet, Light Wand, Video Laryngoscope and more
  • Learn how to select the correct equipment for the situation
  • Double set-up indications

The Difficult Airway 

  • Application of difficult airway algorithms to fit the correct clinical conditions
  • A stepwise process discussion to maximize airway success
  • Indications and procedure for emergent cricothyrotomy

Ultrasound Course Content

Introduction to Ultrasound

  • Ultrasound Physics
  • Probe functions and types
  • Methods of scanning (sliding, rocking, other movements and techniques)
  • Probe Settings (depth, “knobology”)
  • Hand movements and dexterity

Biliary Ultrasound

  • Liver and Gall Bladder
  • Identification of anatomy
  • Abnormal Findings and Diagnostic Criteria
  • Interpretation of findings and Management

DVT Ultrasound

  • Lower extremity venous anatomy and scanning technique
  • Expected normal and abnormal findings
  • Interpretation of doppler and compressibility images
  • Clinical decision-making and follow-up

eFAST Ultrasound

  • Trauma-focused exam 
  • Includes abdomen, bladder, cardiac, and pulmonary imaging
  • Diagnostic criteria and decision-making
  • Includes common and subtle findings

Ocular Ultrasound

  • Technique and probe placement
  • Retinal detachment, foreign bodies, lens dislocation, vitreous hemorrhage, retrobulbar hematoma, and papilledema
  • Next clinical steps

Pelvic Ultrasound

  • Probe placement and scanning technique
  • Uterine, ovarian, and adnexal pathology
  • Next clinical steps

Pulmonary Ultrasound

  • Small groups, team led with hands-on guidance and findings
  • Review and individual practice sessions with instructors
  • Additional ultrasound applications
  • Wrap-Up and Closing

Renal Ultrasound

  • Anatomy and probe placement
  • Ultrasonic anatomy and expected findings
  • Clinical correlation and management

Soft Tissue Ultrasound

  • Probe selection and settings
  • Foreign body, cellulitis, abscess, and cyst identification
  • Next clinical steps

Ultrasound for Vascular Access

  • Anatomy of peripheral and central veins
  • Application of Ultrasound to assist with line placement
  • Visualization of landmarks and expected clinical findings

Abdominal Aorta Ultrasound

  • Anatomy and ultrasound placement
  • Expected normal and abnormal findings
  • Next clinical steps and application

3-Day Clinical Skills & Procedure Workshop + The Airway Course

Day 1 Morning

Airway Anatomy and Assessment

  • How to assess an airway
  • Identification of landmarks
  • Predicting a difficult airway
  • Special scenarios
  • Airway classification and grading

Indications for Airway Management

  • Clinical conditions
  • Respiratory status
  • Anatomy
  • Predictors of airway need
  • Common approaches

Non-Invasive and Invasive Airway Management

  • Escalation of intervention
  • Sequential oxygenation
  • BIPAP
  • CPAP
  • Endotracheal Intubation
  • Airway Adjuncts (LMA, OPA)

Airway Options and Medications

  • Types of airway devices
  • Airway equipment
  • Laryngoscopes
  • Fiberoptic and Video Scopes
  • Induction agents and dosing

Induction and Intubation

  • Procedure organization and setup
  • Stepwise airway protocols
  • Anatomy
  • Endotracheal Intubation
  • Hands-On Procedure Practice

Tube Confirmation and Difficult Airway Management

  • Confirmatory tests
  • Defining an intact airway
  • How to manage a failed airway
  • Difficult airway algorithm and management
  • Fiberoptic laryngoscopy
  • Laryngeal mask airway
  • Video laryngoscope

Day 1 Afternoon

procedure

Difficult Airway Algorithm and Simulation

  • Application of the difficult airway algorithm
  • Simulated patient scenarios
  • Intubation with video laryngoscopy
  • Hands-On airway procedure lab
  • Individual review with instructor
  • Certification Examination

Day 2 Morning

Cardiac

Cardiac Disorders

  • Course Introduction
  • Cardiac Overview
  • EKG Interpretation
  • Acute MI (recognition, management)
  • Common Dysrhythmias
  • Electrolyte Abnormalities and rhythm impacts
  • Condition blocks
  • Bundle Branch Blocks
  • Application to practice
Pulmonary

Pulmonary Disorders

  • Pulmonary Overview
  • Basic Airway Assessment
  • Pneumothorax
  • Asthma Management
  • COPD Management
  • Supplemental Oxygenation
  • Wells Criteria
  • PERC Rule
  • Using D-Dimer
  • Pulmonary Embolism
  • Treatment of Pulmonary Embolism

Introduction to Radiology – Chest and Abdomen

 
  • Overview of Radiograph Interpretation
  • Chest, Shoulder, Clavicle Radiographs
  • Systemic Reading Process
  • Abnormal Radiographs
  • Radiographic Signs of Major Diseases
  • Suggested treatment guidelines based on findings
  • Radiographic Signs of High Impact Injuries
  • Foreign body ingestion, aspiration, and insertion
  • Pediatric foreign body aspiration and management

Day 2 Afternoon

procedure

Procedure Overview

  • Procedural Overview
  • Needle Decompression
  • Chest Tube Insertion
  • Tracheostomy Replacement
  • Shoulder Reduction and Immobilization
  • Upper Extremity Joint Aspiration
  • Trigger Point Injection
  • Nail Trephination
  • Nail Removal
  • Foreign Body and Fish Hook Removal
    Introduction to Suture Techniques
     
suturing

The Suturing Course

  • Suture Clinic and Equipment Introduction
  • Knot Tying
  • Simple Interrupted
  • Simple Running
  • Mattress
  • Subcutaneous/Multiple Layer Closure
  • Staples
  • Skin Adhesive
  • Surgeon’s Knot
  • Buried Knot
  • Billing and Documentation for Sutures
  • Local Injections and Digital Blocks
 
procedure

Procedure Workshop

  • Knee Injection and Aspiration
  • Shoulder Injection
  • Needle Decompression
  • Chest Tube Insertion

Day 3 Morning

Cervical Spine Injuries

  • Long Board and Collar Removal
  • NEXUS Criteria
  • Unstable Fractures
  • Mechanisms of Common Fractures
  • Immobilization
  • Ordering the Correct Studies
  • Correct Consult and Referral
 

Thoracic and Lumbar Spine Injuries

  • Spine form and function
  • Mechanisms of Injury
  • Unstable Fractures
  • Mechanisms of Common Fractures
  • Cauda Equina Syndrome
  • Epidural Abscess
  • Ordering the Correct Studies
  • Correct Consult and Referral
 
Extremity

Upper and Lower Extremity Injuries

  • Speaking Orthopedics
  • Common Patterns of Fractures
  • Common Dislocation and Reduction Techniques
  • Splinting Techniques and Compartment Syndrome
  • Clavicle, Shoulder, Humerus, Elbow, Radius. Ulna. Paired fractures, Wrist and Carpal Bones, Hand
  • Amputations
  • When to Consult Orthopedics
  • When to Consider Transfer/EMS
  • What to send home

Day 3 Afternoon

skin

Skin Conditions Not to Miss

  • Skin and Soft Tissue Conditions
  • Emergent Rash Identification
  • Cellulitis
  • Abscess Incision and Drainage
  • DVT Identification and Decisions Rules
  • Burn Care and Referral Criteria
  • What Not to Send Home
procedure

Procedure Workshop

  • Procedure Clinic
  • Lumbar Puncture
  • Splinting Workshop
  • Intraosseous Access
  • Central Venous Catheter Insertion

3-Day Clinical Skills & Procedure Workshop + The Ultrasound Course

Day 1 Morning

Introduction to Ultrasound

  • Ultrasound Physics
  • Probe functions and types
  • Methods of scanning (sliding, rocking, other movements and techniques)
  • Probe Settings (depth, “knobology”)
  • Hand movements and dexterity
ultrasound

Abdominal Ultrasound

  • Aorta (all views, normal anatomy, pathology)
  • Biliary Quadrant (gallbladder, stones, techniques)
  • Kidney (hydronephrosis, pyelonephritis)
  • Trans-abdominal Pelvis
procedure

Trauma Ultrasound

  • eFAST exam
  • Right upper quadrant imaging
  • Left upper quadrant imaging
  • Bladder Imaging
  • Cardiac Imaging
  • Lung Imaging
procedure

Free Scan with Live Models

  • Small groups, team led with hands-on guidance and findings

Day 1 Afternoon

Specialty Ultrasound

  • Ocular Ultrasound (retinal detachment, foreign bodies)
  • Foreign body imaging
  • Ultrasound-Guided IV and Central access technique
  • Lower Extremity Vascular Ultrasound
procedure

Afternoon Free Scan

  • Small groups, team led with hands-on guidance and findings
  • Review and individual practice sessions with instructors
  • Additional ultrasound applications
  • Wrap-Up and Closing

Day 2 Morning

Cardiac

Cardiac Disorders

  • Course Introduction
  • Cardiac Overview
  • EKG Interpretation
  • Acute MI (recognition, management)
  • Common Dysrhythmias
  • Electrolyte Abnormalities and rhythm impacts
  • Condition blocks
  • Bundle Branch Blocks
  • Application to practice
Pulmonary

Pulmonary Disorders

  • Pulmonary Overview
  • Basic Airway Assessment
  • Pneumothorax
  • Asthma Management
  • COPD Management
  • Supplemental Oxygenation
  • Wells Criteria
  • PERC Rule
  • Using D-Dimer
  • Pulmonary Embolism
  • Treatment of Pulmonary Embolism

Introduction to Radiology – Chest and Abdomen

 
  • Overview of Radiograph Interpretation
  • Chest, Shoulder, Clavicle Radiographs
  • Systemic Reading Process
  • Abnormal Radiographs
  • Radiographic Signs of Major Diseases
  • Suggested treatment guidelines based on findings
  • Radiographic Signs of High Impact Injuries
  • Foreign body ingestion, aspiration, and insertion
  • Pediatric foreign body aspiration and management

Day 2 Afternoon

procedure

Procedure Overview

  • Procedural Overview
  • Needle Decompression
  • Chest Tube Insertion
  • Tracheostomy Replacement
  • Shoulder Reduction and Immobilization
  • Upper Extremity Joint Aspiration
  • Trigger Point Injection
  • Nail Trephination
  • Nail Removal
  • Foreign Body and Fish Hook Removal
    Introduction to Suture Techniques
     
suturing

The Suturing Course

  • Suture Clinic and Equipment Introduction
  • Knot Tying
  • Simple Interrupted
  • Simple Running
  • Mattress
  • Subcutaneous/Multiple Layer Closure
  • Staples
  • Skin Adhesive
  • Surgeon’s Knot
  • Buried Knot
  • Billing and Documentation for Sutures
  • Local Injections and Digital Blocks
 
procedure

Procedure Workshop

  • Knee Injection and Aspiration
  • Shoulder Injection
  • Needle Decompression
  • Chest Tube Insertion

Day 3 Morning

Cervical Spine Injuries

  • Long Board and Collar Removal
  • NEXUS Criteria
  • Unstable Fractures
  • Mechanisms of Common Fractures
  • Immobilization
  • Ordering the Correct Studies
  • Correct Consult and Referral
 

Thoracic and Lumbar Spine Injuries

  • Spine form and function
  • Mechanisms of Injury
  • Unstable Fractures
  • Mechanisms of Common Fractures
  • Cauda Equina Syndrome
  • Epidural Abscess
  • Ordering the Correct Studies
  • Correct Consult and Referral
 
Extremity

Upper and Lower Extremity Injuries

  • Speaking Orthopedics
  • Common Patterns of Fractures
  • Common Dislocation and Reduction Techniques
  • Splinting Techniques and Compartment Syndrome
  • Clavicle, Shoulder, Humerus, Elbow, Radius. Ulna. Paired fractures, Wrist and Carpal Bones, Hand
  • Amputations
  • When to Consult Orthopedics
  • When to Consider Transfer/EMS
  • What to send home

Day 3 Afternoon

skin

Skin Conditions Not to Miss

  • Skin and Soft Tissue Conditions
  • Emergent Rash Identification
  • Cellulitis
  • Abscess Incision and Drainage
  • DVT Identification and Decisions Rules
  • Burn Care and Referral Criteria
  • What Not to Send Home
procedure

Procedure Workshop

  • Procedure Clinic
  • Lumbar Puncture
  • Splinting Workshop
  • Intraosseous Access
  • Central Venous Catheter Insertion

1-Day Advanced and Difficult Airway Course Schedule

Day 1 Morning

Airway Anatomy and Assessment

  • How to assess an airway
  • Identification of landmarks
  • Predicting a difficult airway
  • Special scenarios
  • Airway classification and grading

Indications for Airway Management

  • Clinical conditions
  • Respiratory status
  • Anatomy
  • Predictors of airway need
  • Common approaches

Non-Invasive and Invasive Airway Management

  • Escalation of intervention
  • Sequential oxygenation
  • BIPAP
  • CPAP
  • Endotracheal Intubation
  • Airway Adjuncts (LMA, OPA)

Airway Options and Medications

  • Types of airway devices
  • Airway equipment
  • Laryngoscopes
  • Fiberoptic and Video Scopes
  • Induction agents and dosing

Induction and Intubation

  • Procedure organization and setup
  • Stepwise airway protocols
  • Anatomy
  • Endotracheal Intubation
  • Hands-On Procedure Practice

Tube Confirmation and Difficult Airway Management

  • Confirmatory tests
  • Defining an intact airway
  • How to manage a failed airway
  • Difficult airway algorithm and management
  • Fiberoptic laryngoscopy
  • Laryngeal mask airway
  • Video laryngoscope

Day 1 Afternoon

procedure

Difficult Airway Algorithm and Simulation

  • Application of the difficult airway algorithm
  • Simulated patient scenarios
  • Intubation with video laryngoscopy
  • Hands-On airway procedure lab
  • Individual review with instructor
  • Certification Examination

1-Day Ultrasound Course Schedule

Day 1 Morning

Introduction to Ultrasound

  • Ultrasound Physics
  • Probe functions and types
  • Methods of scanning (sliding, rocking, other movements and techniques)
  • Probe Settings (depth, “knobology”)
  • Hand movements and dexterity
ultrasound

Abdominal Ultrasound

  • Aorta (all views, normal anatomy, pathology)
  • Biliary Quadrant (gallbladder, stones, techniques)
  • Kidney (hydronephrosis, pyelonephritis)
  • Trans-abdominal Pelvis
procedure

Trauma Ultrasound

  • eFAST exam
  • Right upper quadrant imaging
  • Left upper quadrant imaging
  • Bladder Imaging
  • Cardiac Imaging
  • Lung Imaging
procedure

Free Scan with Live Models

  • Small groups, team led with hands-on guidance and findings

Day 1 Afternoon

Specialty Ultrasound

  • Ocular Ultrasound (retinal detachment, foreign bodies)
  • Foreign body imaging
  • Ultrasound-Guided IV and Central access technique
  • Lower Extremity Vascular Ultrasound
procedure

Afternoon Free Scan

  • Small groups, team led with hands-on guidance and findings
  • Review and individual practice sessions with instructors
  • Additional ultrasound applications
  • Wrap-Up and Closing

The APP Clinical Skills and Procedure Workshop Schedule

Day 1 Morning

Cardiac

Cardiac Disorders

  • Course Introduction
  • Cardiac Overview
  • EKG Interpretation
  • Acute MI (recognition, management)
  • Common Dysrhythmias
  • Electrolyte Abnormalities and rhythm impacts
  • Condition blocks
  • Bundle Branch Blocks
  • Application to practice
Pulmonary

Pulmonary Disorders

  • Pulmonary Overview
  • Basic Airway Assessment
  • Pneumothorax
  • Asthma Management
  • COPD Management
  • Supplemental Oxygenation
  • Wells Criteria
  • PERC Rule
  • Using D-Dimer
  • Pulmonary Embolism
  • Treatment of Pulmonary Embolism

Introduction to Radiology – Chest and Abdomen

 
  • Overview of Radiograph Interpretation
  • Chest, Shoulder, Clavicle Radiographs
  • Systemic Reading Process
  • Abnormal Radiographs
  • Radiographic Signs of Major Diseases
  • Suggested treatment guidelines based on findings
  • Radiographic Signs of High Impact Injuries
  • Foreign body ingestion, aspiration, and insertion
  • Pediatric foreign body aspiration and management

Day 1 Afternoon

procedure

Procedure Overview

  • Procedural Overview
  • Needle Decompression
  • Chest Tube Insertion
  • Tracheostomy Replacement
  • Shoulder Reduction and Immobilization
  • Upper Extremity Joint Aspiration
  • Trigger Point Injection
  • Nail Trephination
  • Nail Removal
  • Foreign Body and Fish Hook Removal
    Introduction to Suture Techniques
     
suturing

The Suturing Course

  • Suture Clinic and Equipment Introduction
  • Knot Tying
  • Simple Interrupted
  • Simple Running
  • Mattress
  • Subcutaneous/Multiple Layer Closure
  • Staples
  • Skin Adhesive
  • Surgeon’s Knot
  • Buried Knot
  • Billing and Documentation for Sutures
  • Local Injections and Digital Blocks
 
procedure

Procedure Workshop

  • Knee Injection and Aspiration
  • Shoulder Injection
  • Needle Decompression
  • Chest Tube Insertion

Day 2 Morning

Cervical Spine Injuries

  • Long Board and Collar Removal
  • NEXUS Criteria
  • Unstable Fractures
  • Mechanisms of Common Fractures
  • Immobilization
  • Ordering the Correct Studies
  • Correct Consult and Referral
 

Thoracic and Lumbar Spine Injuries

  • Spine form and function
  • Mechanisms of Injury
  • Unstable Fractures
  • Mechanisms of Common Fractures
  • Cauda Equina Syndrome
  • Epidural Abscess
  • Ordering the Correct Studies
  • Correct Consult and Referral
 
Extremity

Upper and Lower Extremity Injuries

  • Speaking Orthopedics
  • Common Patterns of Fractures
  • Common Dislocation and Reduction Techniques
  • Splinting Techniques and Compartment Syndrome
  • Clavicle, Shoulder, Humerus, Elbow, Radius. Ulna. Paired fractures, Wrist and Carpal Bones, Hand
  • Amputations
  • When to Consult Orthopedics
  • When to Consider Transfer/EMS
  • What to send home

Day 2 Afternoon

skin

Skin Conditions Not to Miss

  • Skin and Soft Tissue Conditions
  • Emergent Rash Identification
  • Cellulitis
  • Abscess Incision and Drainage
  • DVT Identification and decision rules
  • Burn Care and Referral Criteria
  • What Not to Send Home
procedure

Procedure Workshop

  • Procedure Clinic
  • Lumbar Puncture
  • Splinting Workshop
  • Intraosseous Access
  • Central Venous Catheter Insertion

The Clinical Skills & Procedure Workshop + The Ultrasound Course

[tribe_events_list view="photo" category="POCUS3"]